〈特別研究課題〉	環境調和型プラズマプロセスを用いた
	新しい材料表面改質とその応用に関する研究
助成研究者	名古屋大学 田中 宏彦

環境調和型プラズマプロセスを用いた 新しい材料表面改質とその応用に関する研究 田中 宏彦 (名古屋大学)

Research on new material surface modifications using environment-friendly plasma processes and its application Hirohiko Tanaka (Nagoya University)

Abstract :

For saving resources in the world, "material surface modification" is widely performed as one of the effective methods. A nitriding technique for forming a nitrided layer on the surface of a metal or resin is used to improve wear resistance and corrosion resistance. In addition, the microfabrication of the surface contributes to the improvement of the catalytic property due to the increase of the surface area. This study aims to develop innovative surface modification technologies that use environmentally friendly gases such as nitrogen and helium.

First, we applied the detached plasma technology developed in magnetic confinement fusion research to the field of nitriding. To perform the radical nitridation capable of high-quality film formation, high-density nitrogen radical generation was attempted by dissociative recombination instead of dissociative excitation process in NAGDIS-T, which has long connection length magnetic field. By using a Langmuir probe and a spectrometer, plasma and neutral particle characteristics were estimated.

In addition, it is known that helium plasma irradiation forms nanostructure (fuzz) on various metals in the fusion research. In recent years, a phenomenon in which fuzz explosively grows to millimeter size has been discovered by simultaneously irradiating metal particles. We investigated the growth mechanism with the goal of creating new catalyst materials.

1. はじめに

世界における省資源化の技術開発が加速する中で、"材料表面改質"は特に有効な手法として用 いられている。金属や樹脂の表面に窒化層を形成する窒化技術は、耐摩耗性や耐食性を向上させて 材料の超寿命化に資することから、切削工具や自動車部品等に幅広く利用されている。また表面の ナノサイズの微細化は、比表面積増加に伴う触媒作用の向上に寄与している。種々のプロセスが既 に実用化されているが、処理時間の長さや、ウェットプロセスにより生じる廃液の問題等が存在す る。社会に普及し、持続可能な都市環境を構築するためには、環境調和性が高く高速処理可能な革 新的な表面改質技術が求められている。

本研究では 窒素やヘリウムといった安価かつ環境負荷の低いガスを使った新しいプラズマプロ セスを用いて金属の表面処理を行う。まず、核融合プラズマ研究で培われたプラズマ非接触化技術 を窒化分野へと応用する。高品質な成膜が可能なラジカル窒化に着目し、通常の解離性励起でなく 解離性再結合による低温の窒素ラジカル生成を行うことで、既存技術と比べて高密度(10¹⁹-10²⁰ m⁻³)な窒素ラジカル源を開発することを目標とする。加えて、他の核融合研究の派生技術として、 ヘリウムプラズマを各種金属に照射することで繊維状のナノ構造(ファズ)が形成されることが確認 されている。ファズ形成材料には触媒作用の向上が見込めるが、形成に必要なイオン照射量(∞照 射時間)の多さが産業応用に向けての課題であった。しかし近年、金属のスパッタ照射を複合的に 行うことで、ミリメートルサイズまでファズが爆発的に成長する現象が発見された。成長促進機構 と最適な照射条件を明らかにすることで、市場流通品と比べて競争力のある新規触媒材料を創製す ることを目標とする。

2 新しい窒素ラジカル源開発に関する研究

2.1 原理および目的

現在、産業界で広く利用されている窒化技術として、アンモニアを用いたガス窒化がある。しか しこの手法は、数十時間といった加熱時間を要するのに加え、材料表面に脆い化合物層を形成する [1]。他の手法としてグロー放電を用いるイオン窒化[2]が知られているが、電界中で加速されたイ オンによって材料表面が損傷を受けるといった欠点がある。そこで、イオンによる損傷なく窒化層 を形成する方法として窒素原子を用いるラジカル窒化が考案された。ただし窒素分子の高い結合エ ネルギー(8.8 eV)のために、電子衝突による解離は起こりにくく、高密度の窒素原子を生成するこ

とは一般に困難である[3]。既存のラジカル 源として電子ビーム励起プラズマ(EBEP) が知られているが、生成される窒素原子密 度は10¹⁷ m⁻³のオーダーである[4]。図1にイ オン化および解離性再結合の速度係数の電 子温度依存性を示す[5]。EBEPでは高エネ ルギーの電子ビームを採用することで、電 子衝突解離過程(N₂ + e⁻ \rightarrow N + N + 2e⁻)を 経て窒素分子を解離する。通常のプロセス プラズマの電子温度(10 eV以下)では、解離

でなく窒素分子のイオン化が支配的となる $(N_2 + e^- \rightarrow N_2^+ + 2e^-)$ 。

本研究では、"プラズマ非接触化"と呼ばれる核融合プラズマ装置の壁面付近で適用される手法 を窒素ラジカル源に応用する。本手法は、磁力線に沿って運ばれる膨大な熱流・粒子流を散逸させ る目的で確立されつつある技術であり、電離・放射冷却、イオンー中性粒子衝突の各過程により電 子温度1 eV以下までプラズマを冷却させる。図1に示すとおり、電子温度1 eV以下の低温では、窒 素分子イオンの解離性再結合 ($N_2^+ + e^- \rightarrow N + N$)の速度係数が大きくなる。そこで本研究ではま ず、数eV程度の高密度窒素分子プラズマを生成する。次に、プラズマが磁力線に沿って輸送され る過程で十分に冷却することで解離性再結合を促し、高密度の窒素原子生成を目指す。

2.2 実験装置

名古屋大学所有のプラズマ装置であるト ロイダル・ダイバータ模擬実験装置 NAGDIS-T (NAGoya DIvertor plasma Simulator with Toroidal magnetic configuration)を使用する(図2参照)[6]。トロ イダル磁場(B_t)および垂直磁場(B_r)の足し合 わせにより螺旋状にひねられた磁場を生成 することができ、水平面に対するピッチ角 (θ)を小さくすることで、非常に長い磁力 線接続長 L_e (放電部から壁までの磁力線の長 さ)を実現可能な装置である。

図3(a)に放電部の写真を示す。真空容器下 部に設置された陰極には、円形の六ホウ化 ランタン(LaB₆)を用いている。ヒーターに より加熱することで熱電子を放出させ、こ れを陽極–陰極間で加速させることで、導 入した窒素ガスを電離させる。本方式によ り、定常的な窒素分子プラズマの生成が期 待される。

プラズマパラメータの同定には、ポロイ

図2. トロイダル・ダイバータ模擬実験装置NAGDIS-Tの概略図

図3. (a)放電部写真、(b)2次元静電プローブの計測範囲

ダル断面を2次元的に駆動できる静電プローブを用いた (図3(b)参照)[5]。本プローブは陰極からトロイダル方向(装置上方から見て時計回り)に90度離れている (ϕ = 90°)。加えて、Czerny-Turner分光器による受動分光をトロイダル角 ϕ = 240°の位置で行った。

2.3 静電プローブ計測

磁場強度を B_t = 8.3 mT、 B_v = 0.6 mTに固定し、ガス圧を変化させた際の窒素プラズマパラメー タの静電プローブ計測を行った。このとき、 θ = 4.1°、 L_c = 3.88 mである。図4(a)に中性粒子圧力 p = 3.1 mTorrのときの窒素プラズマの写真を示す。放電部に繋がる1周目のプラズマ発光(写真中 央~下部)と、発光強度は弱いながらも2周目のプラ ズマがその上方(写真中央)に確認される。このとき の放電電流および放電電圧はそれぞれI_d = 10 A, V_d = 130 Vである。

図4(b)に、イオン飽和電流 I_{sat} (\propto イオン粒子束)の 2次元分布を示す。真空容器下面からの高さ $y \sim 60$ mmおよび $y \sim 220$ mmの位置に、1周目および2周目 のプラズマが確認できる。半値全幅はそれぞれ約62 mmと約77 mmであり、磁力線に沿って約2 mの距離 を輸送される過程で24%増加している。

次に、 I_{sat} ピーク位置における電子温度 T_e および電 子密度 n_e の放電電力(P_a)依存性を調査した。p = 3.1mTorrでは1周目、2周目とも計測が行われたが、p= 6.7 mTorrでは2周目のみ計測している。図5(a)か ら、 T_e はp = 3.1 mTorrのとき P_a と正の相関を示し、 1周目から2周目にかけて約半分に低下していた。p= 6.7 mTorrでは、 $P_a \sim 1$ kWのときを除き3.1 mTorrのときと比べてわずかに低下した。一方、

図4 (a)ガス圧3.1 mTorrにおけるプラズマ写真、 (b)イオン飽和電流の2次元分布 [5]

図5. ガス圧3.1 mTorrにおける1周目(実線)および2周目(破線)、6.7mTorrにおける2周目(点線)のプラズマの(a)電子温度、(b)電子密度の放電電力依存性[5]

図5(b)から n_e はいずれの条件でも P_a と正の相関を示し、p = 3.1 mTorrでは1周目から2周目にかけて約70%減少した。加えてp = 6.7 mTorrでは3.1 mTorrのときと比べてわずかに減少が見られた。

以上の結果から、*T_e*と*n_e*は磁力線に沿って運ばれる過程で大きく減少していることが確認された。上述の半値全幅に関する議論により拡散輸送の影響はそれほど大きくないことから、再結合過程の寄与が示唆される。さらに、高い中性ガス圧環境で再結合過程が促進される可能性が示された。

2.4 受動分光計測

2.3節の静電プローブ計測により電子温度および電子密度が評価された。本節では分光計測によ

る原子密度評価を行なった結果を述べる 通常、再結合プラズマ中におけるポピュレーション分布 は主に再結合成分によって決定され これは原子密度に依存しないため 発光強度から原子密度を 評価することは困難である。しかし p = 3.1 mTorrのときTは2 eV程度以上あることから(図 5(a))、ここではポピュレーション分布は電子衝突励起によって主に決まると仮定し、コロナ平衡 に基づく窒素原子密度評価を行なった。

3 ⁴S 準位 窒素原子密度n(3p ⁴S_{3 2})は

$$n(3p \, {}^{4}S_{3/}) = I^{*}_{46.8} \, [N]/A(3p \, {}^{4}S_{3/2}, 3s \, {}^{4}S_{5/2}), \tag{1}$$

により求められる。ここで $I_{746.8}^{*}$ [N は波長746 8 nmにおける発光強度[sr¹nm¹-²s⁻¹]、 $A(3p \ {}^{4}S_{3/2}, s \ {}^{4}S_{5/}$)は3 ${}^{4}S_{3/}$ 準位から s S 準位への脱励起過程の遷移確率である 基底状態からの電子衝突励起が支配的であると仮定すると 窒素原子の基底準位密 $n(p \ {}^{2}E_{3/2})$ には次式の関係がある[7]。

$$n(3p \ {}^{4}S_{3/2}) = \frac{c(2p \ {}^{4}S_{3/2}, 3p \ {}^{4}S_{3/2})}{\sum_{<3p \ {}^{4}S_{3/2}} A} n(2p \ {}^{4}S_{3/2}).$$
(2)

ここで $<_{3p}$ S_3 Aは3p ${}^4S_{3/2}$ 準位からの脱励起確率 の総和、速度係数Cは文献[8]により与えられる。 分光計測位置は静電プローブ計測位置と異なるこ とから、分光位置における T_c および n_c は1周目およ び2周目の計測値から内挿により求めた。

図6に基底状態窒素原子密度 n_N の放電電力依存性 を示す。エラーバーは内挿により求めた T_e および n_e が±20%の誤差を含むとして評価したものであ る。本結果より、 $n_N \sim 1 \times 10^{17} \text{ m}^{-3}$ の窒素原子密度 が得られた。

図0. コロケ 半関モテルにより水のられた基底状態の塗 素原子密度の放電電力依存性[5]

2.5 窒素ラジカル源開発に関するまとめ

本研究では、解離性再結合過程を利用した新しい高密度窒素ラジカル源の可能性を調査した。装置サイズと比べて非常に長い接続長の磁力線を有するNAGDIS-Tにおいて、窒素プラズマの生成 と、そのパラメータ評価を行なった。加えて、窒素原子密度の初期的な評価を実施した。

今後は放電電極の改造を含めた放電の最適化を進めることで、より高い密度のプラズマ生成を目 指す。さらに、これを1 eV以下まで冷却することで、解離性再結合過程を支配的にする。これら により、窒素原子の高密度化を実現する。

3. 巨大ファズ成長機構に関する研究

3.1 背景および目的

重水素と三重水素の核融合反応では、燃焼後の灰としてヘリウムが生成される。そのため磁場核 融合研究では、タングステンなどの高融点、低スパッタリング率材料へのヘリウムプラズマ照射 と、その影響に関する研究が行われてきた。ヘリウムは他のガス種と異なり、スパッタリング閾値 未満の入射イオンエネルギーであっても容易に金属材料表面を変質し、特に一定の条件下で繊維状

のナノ構造(ファズ)が形成されることが明らかとなって いる[9]。ファズが形成されると光学反射率が低下し表 面積が増大することから、光触媒材料などの産業用途へ の応用が期待される。さらにファズは、有害ガスを使用 せず、かつドライプロセスにより形成されることから、 廃液の問題も無い。これらのことから環境調和性の高い 手法であると考えられる。このように新しい表面改質と して期待されるファズであるが、その形成に必要なイオ ン照射量が多いことが課題であった。

図7. 巨大ファズ写真

近年、金属のスパッタ照射を複合的に行うことで、ミリメートルサイズまでファズが爆発的に成 長する現象が発見された(図7)[10]。本研究ではこの新しいファズ(巨大ファズ)の成長機構を明ら かにすることを目的とする。

3.2 実験装置

巨大ファズ形成実験は図8(a)に示す直線型ダイ バータ模擬試験装置NAGDIS-II (NAGova DIvertor plasma Simulator II)を用いて行った。 図8(b)に実験の模式図を示す。タングステン試料 はプラズマ中に磁場と並行方向に設置し、試料 上流にタングステンスパッタ源(タングステンワ イヤ)を配置した。タングステンワイヤには-500 V程度の電圧を印加し、ヘリウムイオンによるス パッタリングによりタングステン粒子をプラズ マ中に放出させる。試料にはスパッタリング閾 値未満の電圧を印加し、ヘリウムイオンおよび タングステン粒子がともに飛来する環境を用意 した。

本研究では走査型電子顕微鏡(SEM)による表 面観察を行った。また図7に見られるように、巨 図8. (a)NAGDIS-II写真、(b)巨大ファズ形成実験の模式図 大ファズの成長は一定の方向性を有しているこ

とがわかる。そこで成長方向とプラズマ流との関係を分光計測により調査した。

3.3 SEMによる微細構造観察

図9にSEMによる観察結果を示す。図9(a)より、巨大ファズは通常のファズと同等スケールの微 細構造が集合することにより形成されていることがわかる。さらに、図9(b)より通常のファズには 見られない微細な膜状構造の形成が確認された。これらは巨大ファズ成長機構の解明への重要な手 がかりであると考えられる。

SEMにより観察された微細構造((a)ファズの集合体構造 (b 膜状構造) **X**9

3.4 分光によるプラズマ流の計測

巨大ファズの成長方向とプラズマ流の依存 性を調べるため、受動分光による流速評価を 行なった ヘリウムイオンの発光波長(H II: 468 58 nm)のドップラーシフトを利用してい る。図10(a)に示すように、試料は地面に対し て水平に設置し、この上下位置の発光スペク トルを分光器により取得した。

図11に(a)タングステン試料無し、(b)試料有 り時におけるプラズマ流速の計測結果を示

図10. (a)試料と計測位置の模式図 (b)発光スペクトルの一例 (横軸:波長、縦軸:垂直位置)

す。試料が無い場合も上下位置でプラズマ流の反転が起きており、これは軸方向磁場Bと径方向電 場EのE×Bドリフトによる周方向回転を観測したものと考えられる。負の電位が印加された試料 がある場合、プリシースの影響によるものか、流速の増大が確認された。放電部(上流)から終端板 (下流)へと向かう磁力線方向の流れとE×Bドリフトによる周方向回転の合成は、巨大ファズの成 長方向(図7における右下方向)と定性的に一致していたことから 巨大ファズは成長過程でプラズ マの流れの影響を受けていると考えられる[11]。

4. おわりに

本研究では、磁場核融合研究の派生研究として、環境調和性の高い新規的な材料表面改質法の確 立とその理解を目指して、窒素ラジカル源開発および巨大ファズ形成機構の調査を行った。いずれ もプラズマ自体を正しく理解する必要があることから、上述の研究ほか、プラズマの輸送により特化した研究についても遂行している[12-16]。またSEMにより得られた情報をより有用に活用するため、統計的解析手法の適用によるプラズマ照射試料の特徴づけを行った[17]。今後これらの研究を発展させることで、産業分野への展開に繋げていく。

参考文献

- [1] T. Takase, Tetsu-to-hagane 66, 9, 1423 (1980).
- [2] M. Hudis, J. Appl. Phys. 44, 1489 (1973).
- [3] J.M. Hendrie, J. Chem. Phys. 22, 1503 (1954).
- [4] S. Tada et al., J. Appl. Phys. 88, 1756 (2000).
- [5] K. Asaoka et al., Plasma Fusion Res. 14, 3401069 (2019).
- [6] K. Yada et al., J. Nucl. Mater. 390-391, 290 (2009).
- [7] M. Goto et al., J. Plasma Fusion Res. 79, 12, 1287 (2003).
- [8] R.M. Frost et al., J. Appl. Phys. 84, 6 (1998).
- [9] S. Kajita et al., Nucl. Fusion 49, 095005 (2009).
- [10] S. Kajita et al., Scientific Reports 8, 56 (2018).
- [11] S. Kajita et al., Nucl. Fusion 58, 106002 (2018).
- [12] H. Tanaka et al., Plasma Phys. Control. Fusion 60, 075013 (2018).
- [13] H. Tanaka et al., Phys. Plasmas 25, 082505 (2018).
- [14] H. Tanaka et al., Plasma Phys. Control. Fusion 60, 125001 (2018).
- [15] H. Tanaka et al., Plasma Fusion Res. 14, 2402036 (2019).
- [16] H. Tanaka et al., Nucl. Mater. Energy 19, 378 (2019).
- [17] H. Tanaka et al., Plasma Fusion Res. 14, 3402049 (2019).